0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigation of Freeze-Thaw Resistance of Stabilized Saline Soil

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-13
DOI: 10.1155/2021/5555436
Abstract:

In this paper, three freezing-thawing tests are designed to study the freeze-thaw resistance of stabilized sulfate type saline soil. The results show that different destructive modes and erosion extents are caused by different freeze-thaw conditions. The destructive effect from salt tends to be limited if there is no external water intrusion. When sufficient water is provided, ice expansion, dissolution recrystallization of salts, and ettringite growth during the thawing phase may take place. Soil water potential is used for analysis and explanation of the driving force and water migration in the stabilized soil. Pressure potential caused by the air sealed in the stabilized soil specimen leads to early water concentration in the outer parts of the specimen, and the surface layer is first eroded under the freeze-thaw cycles. A high percentage of soil stabilizer can improve the freeze-thaw resistance of stabilized soil, but a sufficiently long curing period plays a more important role. This study provides useful insights for improving the freeze-thaw resistance of solidified saline soil in road engineering.

Copyright: © 2021 Yongxiang Zhou et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10602042
  • Published on:
    17/04/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine