Investigation and Development of a Three-Dimensional Transmission Tower-Line System Model Using Nonlinear Truss and Elastic Catenary Elements for Wind Loading Dynamic Simulation
Author(s): |
Xiao Zhu
Ge Ou |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Shock and Vibration, January 2021, v. 2021 |
Page(s): | 1-29 |
DOI: | 10.1155/2021/1959683 |
Abstract: |
The accuracy of transmission tower-line system simulation is highly impacted by the transmission line model and its coupling with the tower. Owing to the high geometry nonlinearity of the transmission line and the complexity of the wind loading, such analysis is often conducted in the commercial software. In most commercial software packages, nonlinear truss element is used for cable modeling, whereas the initial strain condition of the nonlinear truss under gravity loading is not directly available. Elastic catenary element establishes an analytical formulation for cable structure under distributed loading; however, the nonlinear iteration to reach convergence can be computational expensive. To derive an optimal transmission tower-line model solution with high fidelity and computational efficiency, an open-source three-dimensional model is developed. Nonlinear truss element and elastic catenary element are considered in the model development. The results of the study imply that both elements are suitable for the transmission line model; nevertheless, the initial strain in nonlinear truss element largely impacts the model accuracy and should be calibrated from the elastic catenary model. To cross-validate the developed models on the coupled transmission tower and line, a one-span eight-line system is modeled with different elements and compared with several state-of-the-art commercial packages. The results indicate that the displacement time-history root-mean-square error (RMSE) of the open-source transmission tower-line model is less than |
Copyright: | © 2021 Xiao Zhu, Ge Ou |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.62 MB
- About this
data sheet - Reference-ID
10676140 - Published on:
03/06/2022 - Last updated on:
03/06/2022