0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigating the relationship between surface roughness and reflectance properties of building materials

Author(s):




Medium: journal article
Language(s): English
Published in: Journal of Physics: Conference Series, , n. 1, v. 2685
Page(s): 012030
DOI: 10.1088/1742-6596/2685/1/012030
Abstract:

Materials used in the exterior envelope of buildings and open urban surfaces, in general, strongly affect the urban thermal balance, determining the general magnitude of urban overheating. The surface temperature of reflective materials varies as a function of physical and geometrical properties. Quantifying the influence of surface roughness on reflectance properties has crucial relevance since reflectance can significantly affect the reduction of the absorbed solar radiation and, in turn, the energy demand for cooling. Through an experimental and statistical investigation, this research aims to analytically assess the impact of surface roughness on the reflectance and thermal performances of building materials and, in turn, the role that roughness could play towards urban cooling and mitigation. Results show that the surface’s different roughness affects the sample’s reflectance coefficient, leaving it basically unchanged in the Ultraviolet and Visible ranges but with appreciable differences in the Near-Infrared wavelengths. This outcome confirms the correlation between the surface roughness and the optical and thermal characteristics of the building materials, making evident the importance of the study of superficial topography towards the mitigation of Urban Heat Island phenomena.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1742-6596/2685/1/012030.
  • About this
    data sheet
  • Reference-ID
    10777603
  • Published on:
    12/05/2024
  • Last updated on:
    12/05/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine