0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigating the Influence of Thermal Conductivity and Thermal Storage of Lightweight Concrete Panels on the Energy and Thermal Comfort in Residential Buildings

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 13
Page(s): 720
DOI: 10.3390/buildings13030720
Abstract:

Phase change materials (PCM) are integrated into lightweight concrete (LWC) panels to increase their thermal mass. However, the integration of PCM into LWC also increases the thermal conductivity of the panels, which may have a negative impact. This study investigated the impact of thermal resistance and storage of LWC panels on thermal comfort and energy use in buildings. Six different LWC panels with varying levels of thermal conductivity and storage were developed using various combinations lightweight aggregates and PCM. The experimentally measured properties were used in building simulation software EnergyPlus V9.3 to calculate overheating and building energy consumption for each panel. The result showed that thermal mass influences severe discomfort hours more than thermal resistance. However, the level of influence depends on the position of the panels compared to the insulation layer. The presence of an insulation layer reduced the energy savings rate. The cooling energy consumption was more influenced by the thermal mass, whereas the heating was more influenced by the resistance of the wall. Overall, the LWC panel with the highest thermal mass was the best to reduce severe discomfort hours and energy consumption despite having the highest thermal conductivity. The outcome of this study can help to design an external building envelope with PCM panel as per user requirements, which could be to reduce overheating or cooling only, heating only, or both cooling and heating.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712194
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine