0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigating the Effects of Parameter Tuning on Machine Learning for Occupant Behavior Analysis in Japanese Residential Buildings

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1879
DOI: 10.3390/buildings13071879
Abstract:

Global warming is currently progressing worldwide, and it is important to control greenhouse gas emissions from the perspective of adaptation and mitigation. Occupant behavior is highly individualized and must be analyzed to accurately determine a building’s energy consumption. However, most of the resident behavior models in existing studies are based on statistical methods, and their accuracy in parameter tuning has not been examined. The accuracy of heating behavior prediction has been studied using three different methods: logistic regression, support vector machine (SVM), and deep neural network (DNN). The generalization ability of the support vector machine and the deep neural network was improved by parameter tuning. The parameter tuning of the SVM showed that the values of C and gamma affected the prediction accuracy. The prediction accuracy improved by approximately 11.9%, confirming the effectiveness of parameter tuning on the SVM. The parameter tuning of the DNN showed that the values of the layer and neuron affected prediction accuracy. Although parameter tuning also improved the prediction accuracy of the DNN, the rate of increase was lower than that of the SVM.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737212
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine