0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Interlayer Bond Strength of 3D Printed Concrete Members with Ultra High Performance Concrete (UHPC) Mix

Author(s): ORCID




ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 14
Page(s): 2060
DOI: 10.3390/buildings14072060
Abstract:

In structures manufactured using 3D concrete printing, cracks can easily propagate along the interface between printed layers. Therefore, it was necessary to determine the interlayer bond strength. In this study, direct shear and tensile tests were performed to determine the interlayer bond stability of the 3DCP members. To confirm the appropriateness of the mix proportion used to fabricate the specimens, the open time available for printing was identified via a mixing test, and the extrudability and buildability were verified via a printing test. In addition, direct shear and tensile tests were performed using the specimen manufacturing method (i.e., mold casting and 3D printing) and printing time gap (PTG) between the laminated layers as key test variables. The interlayer bond strengths of the specimens, according to the variables obtained from the test results, were compared and analyzed based on the interfacial shear strength standards presented in the current structural codes. In the direct shear test, failure occurred at the interlayers of all the specimens, and the interlayer bond strength tended to decrease with increasing PTG. In addition, the interlayer bond strength of the direct shear specimens exceeded the interfacial shear strength suggested by current structural codes. In contrast, in the direct tensile test, interlayer surface failure occurred only in some specimens, and there was no distinct change in the interlayer bond strength owing to PTG.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10795515
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine