0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Intelligent Inspection Method for Rebar Installation Quality of Reinforced Concrete Slab Based on Point Cloud Processing and Semantic Segmentation

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 14
Page(s): 3693
DOI: 10.3390/buildings14113693
Abstract:

The rebar installation quality significantly impacts the safety and durability of reinforced concrete (RC) structures. Traditional manual inspection is time-consuming, inefficient, and highly subjective. In order to solve this problem, this study uses a depth camera and aims to develop an intelligent inspection method for the rebar installation quality of an RC slab. The Random Sample Consensus (RANSAC) method is used to extract point cloud data for the bottom formwork, the upper and lower rebar lattices, and individual rebars. These data are utilized to measure the concrete cover thickness, the distance between the upper and lower rebar lattices, and the spacing between rebars in the RC slab. This paper introduces the concept of the “diameter calculation region” and combines point cloud semantic information with rebar segmentation mask information through the relationship between pixel coordinates and camera coordinates to measure the nominal diameter of the rebar. The verification results indicate that the maximum deviations for the concrete cover thickness, the distance between the upper and lower rebar lattices, and the spacing of the double-layer bidirectional rebar in the RC slab are 0.41 mm, 1.32 mm, and 5 mm, respectively. The accuracy of the nominal rebar diameter measurement reaches 98.4%, demonstrating high precision and applicability for quality inspection during the actual construction stage. Overall, this study integrates computer vision into traditional civil engineering research, utilizing depth cameras to acquire point cloud data and color results. It replaces inefficient manual inspection methods with an intelligent and efficient approach, addressing the challenge of detecting double-layer reinforcement. This has significant implications for practical engineering applications and the development of intelligent engineering monitoring systems.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810420
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine