0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

An Intelligent Detection Logic for Fan-Blade Damage to Wind Turbines Based on Mounted-Accelerometer Data

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1588
DOI: 10.3390/buildings12101588
Abstract:

Many wind turbines operate in harsh marine or shore environments. This study assists industry by establishing a real-time condition-monitoring and fault-detection system, with rules for recognizing a wind turbine’s abnormal operation mainly caused by different types of fan-blade damage. This system can ensure ideal wind turbine operation by monitoring the health status of the blades, detecting sudden anomalies, and performing maintenance almost in real time. This is especially significant for wind farms in areas subject to frequent natural disasters (e.g., earthquakes and typhoons). Turbines might fail to endure these because the manufacturers have built them according to the standards developed for areas less prone to natural disasters. The system’s rules are established by utilising concepts and methods from data analytics, digital signal processing (DSP) and statistics to analyse data from the accelerometer, which measures the vibration signals in three dimensions on the platform of the wind turbine’s base. The patterns for those cases involving fan-blade damage are found to establish the rules. With the anomalies detected and reported effectively, repairs and maintenance can be carried out on the faulty wind turbines. This enables ‘maintenance by prediction’ actions for unplanned maintenance as a supplement to the ‘predictive maintenance’ tasks for regular planned maintenance.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700017
  • Published on:
    11/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine