Intelligent Crack Detection and Quantification in the Concrete Bridge: A Deep Learning-Assisted Image Processing Approach
Author(s): |
Licun Yu
Shuanhai He Xiaosong Liu Shuqing Jiang Shuiying Xiang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2022, v. 2022 |
Page(s): | 1-15 |
DOI: | 10.1155/2022/1813821 |
Abstract: |
We proposed a modified concrete bridge crack detector based on a deep learning-assisted image processing approach. Data augmentation technology is introduced to extend the limited dataset. In our proposed method, the bounding box for the crack is detected by YOLOv5. Then, the image covered by the bounding box is processed by the image processing techniques. Compared with the conventional image processing-based crack detection method, the deep learning-assisted image processing approach leads to higher detection accuracy and lower computation cost. More precisely, the mask filter is employed to remove handwritten marks, and the ratio filter is adopted to eliminate speckle linear noises. When a single crack is detected by several bounding boxes, we proposed a novel fusion method to merge these bounding boxes. Furthermore, we proposed a connected component search approach based on the crack trend of the area to improve the connection accuracy. With the crack detector, the cracks that are wider than 0.15 mm can be correctly detected, quantified, and visualized. The detection absolute error of the crack width is less than 0.05 mm. Thus, we realized fast and precise detection and quantification of bridge crack based on the practical engineering dataset. |
Copyright: | © 2022 Licun Yu et al. et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
8.18 MB
- About this
data sheet - Reference-ID
10660756 - Published on:
28/03/2022 - Last updated on:
01/06/2022