Intelligent Computing Based Formulas to Predict the Settlement of Shallow Foundations on Cohesionless Soils
Author(s): |
Bashar Tarawneh
Wassel AL Bodour Khaled Al Ajmi |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | The Open Civil Engineering Journal, February 2019, n. 1, v. 13 |
Page(s): | 1-9 |
DOI: | 10.2174/1874149501913010001 |
Abstract: |
Introduction:Although it is a regular duty of geotechnical engineers to evaluate how much shallow foundation settles in the granular soil, there is no well-approved formula for this task. The intent of this research is to develop a formula that is adequately simple to be used in routine geotechnical engineering work but complete enough to address the behavior of granular soil associated with the settlement issue. Methods:Cone penetration test and foundation load test data were used to generate a formula that can predict the settlement. Genetic Programming (GP) based Symbolic Regression (GP-SR) and artificial neural networks were used to develop an optimized formula. Settlements were also calculated using the finite method and compared to the results of the developed formula. Results and Conclusion:Two formulas were developed using SR, and several models were developed using ANN. ANN model 1 has the highest R² value (0.93) and the lowest MSE (0.16) among all developed ANN and GP-SR models. FEM settlements were almost double the measured ones in some instances. |
Copyright: | © 2019 Bashar Tarawneh et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.78 MB
- About this
data sheet - Reference-ID
10330205 - Published on:
26/07/2019 - Last updated on:
02/06/2021