0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Integrierte Schallabsorption in thermisch aktivierten Betondecken - akustische und thermische Wirksamkeit periodischer Schallabsorberstreifen

Author(s):





Medium: journal article
Language(s): German
Published in: Bauphysik, , n. 5, v. 33
Page(s): 274-286
DOI: 10.1002/bapi.201110792
Abstract:

Integrated sound absorption in thermally activated concrete ceilings - acoustic and thermal effectiveness of sound-absorber strips spaced at intervals.

From the perspectives of energy as well as indoor climate, thermally activated concrete ceilings make sense. Used in office buildings, however, their drawback becomes apparent: they are acoustically reflective. The conventional approaches use sound-absorbing suspended sails and absorber baffles or heat-conducting sound absorbers embedded in large areas of the concrete. In this paper, an alternative approach is presented and is evaluated acoustically and thermally. A few strips of sound absorber, arranged at intervals, are mounted flush into the concrete ceiling. To calculate the sound-absorption spectrum, an already widely publicised model (the Rayleigh approach) is used. It predicts the sound-absorption spectrum for normal sound incidence very well. For diffuse sound incidence, the difference to reverberation chamber measurements is greater, presumably because of the edge effect. The sound- absorption coefficient of the design can be tuned by skilful choice of the strip geometry, and it is significantly higher than the expected average value for the surface.
On the one hand, the thermal efficiency of the components is determined by comparing the heat fluxes in the ceilings with absorber strips to an untreated reference ceiling. On the other hand, the indoor climate is investigated using a room model for office rooms of both solid and lightweight constructions. The influence of the strips (proportion of absorber area 20 %) on the thermal efficiency and indoor climate is low. Two absorber materials are examined in the strip approach: open-cell foam glass and a micro-perforated metallic absorber. While the metallic absorber displays thermal advantages, its sound absorption spectrum - even at high surface-coverage proportions - exhibits a much lower absorption coefficient than, for example, open-cell foam glass strips with only 20 % ceiling coverage. A demonstration in situ shows the potential of the absorber strips spaced at intervals. However, the method chosen in this demonstration project to incorporate the absorber strip into the concrete ceilings needs to be improved.

Keywords:
room acoustics acoustic model sound-field heat flow density
Available from: Refer to publisher
Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1002/bapi.201110792.
  • About this
    data sheet
  • Reference-ID
    10066220
  • Published on:
    08/05/2012
  • Last updated on:
    13/08/2014
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine