0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Integration of Photovoltaic Systems for Energy Self-Sufficient Low-Rise Multi-Family Residential Buildings in Republic of Korea

Author(s):
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 14
Page(s): 2522
DOI: 10.3390/buildings14082522
Abstract:

Globally, building energy consumption has been rising, emphasizing the need to reduce energy usage in the building sector to lower national energy consumption and carbon dioxide emissions. This study analyzes the applicability of photovoltaic (PV) systems in enhancing the energy self-sufficiency of small-scale, low-rise apartment buildings. The analysis is based on a case study using Republic of Korea’s Zero-Energy Building Certification System. By employing the ECO2 simulation program, this research investigates the impact of PV system capacity and efficiency on the energy self-sufficiency rate (ESSR). A series of parametric analyses were carried out for various combinations of building-attached photovoltaic (BAPV) roofs and building-integrated photovoltaic (BIPV) facades, considering the initial cost of BIPV facades. The simulations demonstrate that achieving the target ESSR requires a combination of BAPV roofs and BIPV facades, due to limited roof areas for PV systems. Additionally, this study reveals that BIPV facades can be cost-effective when their unit price, relative to BAPV roofs, is below 62%. Based on the ECO2 simulations, a linear regression formula is proposed to predict the ESSR for the case study building. Verification analysis shows that the proposed formula predicts an ESSR of 74.1%, closely aligned with the official ESSR of 76.9% certified by the Korean government. Although this study focuses on the case of a specific apartment building and lacks actual field data, it provides valuable insights for future applications of PV systems to enhance energy self-sufficiency in small-scale, low-rise apartment buildings in Republic of Korea.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10795065
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine