Instantaneous Spectral Entropy: An Application for the Online Monitoring of Multi-Storey Frame Structures
Author(s): |
Marco Civera
Cecilia Surace |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 8 March 2022, n. 3, v. 12 |
Page(s): | 310 |
DOI: | 10.3390/buildings12030310 |
Abstract: |
Damage assessment techniques based on entropy measurements have been recently proposed for the structural health monitoring of civil structures and infrastructures. A quasi-real-time approach, based on the use of instantaneous spectral entropy (ISE) over an uninterrupted stream of data, is discussed here. The methodology is proposed for the detection of sudden damage-related structural changes (more specifically, linear stiffness reductions and nonlinear breathing cracks). The method operates by framing the continuous stream of vibration signals and comparing the single frames to a known baseline. The approach is also suitable for nonstationary signals originating from nonlinearly behaving structures. The procedure is validated on an experimental benchmark: a laboratory-scaled model of a three-storey single-span frame metallic structure. Three different definitions of entropy and six candidate time–frequency/time-scale transforms have been tested to find the optimal settings. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.76 MB
- About this
data sheet - Reference-ID
10661194 - Published on:
23/03/2022 - Last updated on:
01/06/2022