0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Influence of Wetting Conditions and Concrete Strength of Both Substrate and Repair Material on the Bond Capacity of Repaired Joints

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 13
Page(s): 643
DOI: 10.3390/buildings13030643
Abstract:

Ultra-high performance concrete (UHPC) is an appropriate material to repair and rehabilitate aged structures due to its excellent properties, such as high compressive strength and durability. Several studies have demonstrated the effectiveness of applying UHPC in old buildings as a rehabilitation or repair material, but the bond between concretes needs more investigation. In this sense, the bond between normal-strength concrete (NSC) and UHPC is currently being studied. Three main parameters are responsible for ensuring a good bond: the surface treatment of the substrate (roughness), the wetting conditions, and the mechanical strength of the substrate. Thus, the present study investigated the bond between concretes experimentally. The concrete of the substrate was carried out in three grades: C25, C45, and C60. The repair concretes were C25, C45, C60, and UHPC. The following parameters were evaluated: wetting conditions, air surface dry (ASD), saturated surface dry (SSD), substrate strength, and repair concrete strength. All models received surface treatment by wire brushing. Slant shear and splitting tensile tests were performed to evaluate the mechanical behavior and the failure modes of the bond between concretes. The bond strength was classified and compared to existing predicting models. The results showed that most expressive strength gains occurred in SSD models with lower strength substrates and UHPC. Furthermore, the influence of surface wetting conditions becomes smaller as the strength of the substrate is reduced.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712207
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine