0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Influence of the Elastic-Plastic Dynamic Artificial Boundary on the Progressive Collapse Performance of Truss Structures

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 212
DOI: 10.3390/buildings14010212
Abstract:

The traditional fixed boundary could not transmit the elastic-plastic stress waves in the progressive collapse analysis of the truss structures, leading to discrepancies in understanding the true response of structures. To solve the critical problem, a new dynamic artificial boundary is proposed and integrated into the truss structure to transmit elastic-plastic stress waves. The new dynamic artificial boundary is established through the integration of the elastic-plastic constitutive model into the governing equation of the stress wave. This boundary is subsequently implemented within the ABAQUS finite element software for the purpose of conducting progressive collapse analysis of the truss structures. The progressive collapse simulation of the truss structures involves a comparative analysis between the new dynamic artificial boundary and the traditional fixed boundary. Numerical analysis demonstrates that the dynamic artificial boundary led to varied initial failure and collapse compared to the fixed boundary. The failure typically occurs at the mid-span under the dynamic boundary. In contrast, additional failures occur near the support columns under the fixed boundary due to stress wave reflections. The dynamic artificial boundary more closely reflects the physical reality and provides a new method for the progressive collapse analysis of the truss structures in practical applications.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10760245
  • Published on:
    23/03/2024
  • Last updated on:
    25/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine