0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Influence of Soil Disintegration in Water on SlopeInstability and Failure

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-9
DOI: 10.1155/2020/8898240
Abstract:

The instability of the bank slope of the reservoir will cause great loss to the life and property of the people in the reservoir area. The landslide of the reservoir not only occurs in the period of water level plummeting, but also occurs in the period of water level rising. In this paper, the mechanism of slope landslide in the rising stage of water level was studied from the perspective of soil disintegration in water. A series of tests on the disintegration of prisms and cylinders with the same volume and different bottom side lengths (diameter) were carried out. The results show that the specific surface area of the same volume sample was different, and the disintegration behavior was different. The larger the specific surface area of the same shape sample was, the faster the disintegration speed was. The deeper the water depth was, the shorter the disintegration time was under the same initial conditions. It shows that when the water level of the reservoir rose, the deeper the water depth was, the greater the pore osmotic pressure was, and the more the soil mass of the slope collapsed. This led to the reduction of the pressure on the lower part of the slope, the decrease of the antisliding force of the soil, and the failure of the slope.

Copyright: © Yongzheng Qi et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10433915
  • Published on:
    11/09/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine