The Influence of Roof Opening and Closure on the Overall Wind Pressure Distribution of Airport Terminal Roof
Author(s): |
Mingjie Li
Xiaomin Zhang Yuxuan Bao Jiwei Lin Cheng Pei Xiaokang Cheng Cunming Ma |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 20 February 2025, n. 5, v. 15 |
Page(s): | 735 |
DOI: | 10.3390/buildings15050735 |
Abstract: |
This article investigates the effects of roof opening and closure conditions on the mean and fluctuating wind pressure coefficient of the roof surface through rigid model wind tunnel tests and further explores the non-Gaussian characteristics of wind pressure (skewness, kurtosis, and wind pressure probability density) under the two conditions. Then, based on the non-Gaussian characteristics under two working conditions, this paper constructs a Hermite moment model to solve the peak factor of the roof surface to evaluate the impact of roof opening and closure on the most unfavorable extreme wind pressure. The research results show that under the two working conditions of roof opening and closure, the windward leading edge’s mean and fluctuating wind pressure coefficients change most significantly, leading to an increase in the degree of flow separation at the windward leading edge. This causes the skewness, kurtosis, and probability density function of the wind pressure at the windward leading edge of the roof to deviate significantly from the standard Gaussian distribution, exhibiting strong non-Gaussian characteristics. Meanwhile, based on the Hermite moment model, it is found that the peak factor of most measuring points is concentrated between 3.5 and 5.0 under both roof opening and closure conditions, significantly higher than the recommended value of 2.5 in GB 50009-2012. In addition, under roof opening, the most unfavorable negative pressure coefficient is −4.54, and the absolute value of its most unfavorable negative pressure extreme is 1.3% higher than the roof opening closure condition. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.85 MB
- About this
data sheet - Reference-ID
10820851 - Published on:
11/03/2025 - Last updated on:
11/03/2025