0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Influence of Rock Strength on the Propagation of Slotted Cartridge Blasting-Induced Directional Cracks

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-12
DOI: 10.1155/2019/5752189
Abstract:

Based on theories of explosive mechanics and rock fracture mechanics, the influence mechanism of rock strength on the propagation length of the primary crack in the directional fracture blasting with slotted cartridge has been investigated deeply to propose the relation equation between the rock strength and the propagation length of the primary crack. Theoretically, the maximum lengthamof the primary crack increases with the enhancing rock strength parameters. The explicit dynamic analysis software LS-DYNA has been used to simulate the slotted cartridge blasting in the mudstone, sandstone, and granite with different strengths in order to reveal the effect of rock strength on the propagation length and velocity of the primary crack and the stress distribution characteristics in rock. The numerical results show the primary crack easily bifurcates and attain a much shorter propagation length in the mudstone with the minimum strength, and there are radial cracks appearing in the nonslotted direction. When rock strength rises, the propagation length, velocity, and duration of the primary crack and the concentration degree of effective stress in the slotted direction will all increase in the sandstone and granite, but there is an opposite influence trend of rock strength in the stage of the initial guide crack’s formation. The cracking velocity has an overall oscillation downtrend whose swing amplitude enhances clearly with the increasing rock strength, signifying the more unsteady propagation of the primary crack in the higher strength rock.

Copyright: © Yun Shu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10375755
  • Published on:
    02/10/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine