0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Influence of Ground Motion Parameters on the Seismic Response of an Anchored Rock Slope

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-10
DOI: 10.1155/2020/8825697
Abstract:

The seismic response of rock slopes is closely related to the dynamic characteristics of earthquakes. In this study, based on a numerical model of rock slopes with bolt support, the seismic responses of both anchored and unanchored rock slopes under different seismic waves are calculated. The results show that a “cumulative effect” of the relative permanent displacement of the slope is generated during seismic action, and it is found that the permanent displacement of the slope is caused by larger earthquake accelerations. The dynamic responses of an anchored slope are analyzed in terms of the wave type, frequency, amplitude, and duration and are compared with those of an unanchored rock slope. This comparison suggests that the nominal shear strain increases with the amplitude and duration, which decreases as frequency increases. The axial force is directly related to the surrounding rock strain. The maximum axial force of the bolt is near the rock interface, which shows that the structural plane of the slope plays a dominant role in the seismic response. The seismic waves are random, whereas the structural plane of the rock slope is certain. The seismic response characteristics of the slope under different earthquake conditions are similar, and the dynamic stability of the slope can be attributed to the structural analysis of the rock slope.

Copyright: © Ningbo Peng et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10536043
  • Published on:
    01/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine