Influence of Fine Content and Mean Diameter Ratio on the Minimum and Maximum Void Ratios of Sand–Fine Mixtures: A Discrete Element Method Study
Author(s): |
Huaqiao Zhong
Zhehao Zhu Jiajin Zhao Lanyi Wei Yanyan Zhang Jiayu Li Jiajun Wang Wenguo Yao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 August 2024, n. 9, v. 14 |
Page(s): | 2877 |
DOI: | 10.3390/buildings14092877 |
Abstract: |
As urbanization accelerates and surface space becomes increasingly scarce, the development and utilization of urban underground space have become more critical. The sand–fine mixture soils commonly found in river-adjacent and coastal areas pose significant challenges to the design and construction of underground structures due to their unique mechanical properties. In soil mechanics, the minimum and maximum void ratios are crucial indicators for assessing soil compressibility, permeability, and shear strength. This study employed the discrete element method (DEM) to simulate the minimum and maximum void ratios of sand–fine mixtures under various conditions by setting six fine contents and three mean diameter ratios. The results indicate that as the fine content increases, these void ratios exhibit a trend of initially decreasing and then increasing, which can be effectively modelled using a single-parameter quadratic function. Additionally, the initial shear modulus was closely related to the uniformity of contact distribution at the microscopic level within the specimens. This study also introduced a dimensionless parameter that simultaneously described changes in contact distribution and initial shear modulus. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
9.58 MB
- About this
data sheet - Reference-ID
10799951 - Published on:
23/09/2024 - Last updated on:
23/09/2024