0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Influence of Different Construction Methods on Lateral Displacement of Diaphragm Walls in Large-Scale Unsupported Deep Excavation

Author(s):
ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 23
DOI: 10.3390/buildings14010023
Abstract:

This study examines the influence of different construction methods on the lateral displacement of diaphragm walls in large-scale, unsupported deep excavations. Using the three-dimensional finite element method (FEM) with PLAXIS 3D 2017 software, the research assesses how varying construction techniques impact wall stability, particularly in proximity to sensitive structures like metro systems. The project uniquely integrates peripheral top-down and central bottom-up approaches to minimize environmental disruption. Key focus areas include the roles of back-pull slabs, zoned excavation, and cross walls in reducing wall deformation. Findings reveal that zoned excavation significantly controls lateral displacement on longer site sides, enhancing adjacent structure safety and overall construction integrity. Back-pull slabs are shown to effectively decrease top wall deformation, thereby increasing structural stiffness. Moreover, despite their considerable length (nearly 60 m), cross walls play a crucial role in controlling lateral deformation along the excavation’s length. These insights offer valuable guidance for future projects, especially in regions like Taiwan, where experience with such large-scale, unsupported excavations is limited.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753621
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine