0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Influence of Casein Protein Admixture on Pore Size Distribution and Mechanical Properties of Lime-Metakaolin Paste

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 11
Page(s): 530
DOI: 10.3390/buildings11110530
Abstract:

Biopolymers based on proteins are applied in the building materials technology to modify and improve their selected properties. These polymers are designed as natural admixtures that improve the workability of materials. Casein is an example of a protein-based organic polymer. It is a protein obtained from cow’s milk. The paper aimed at investigating the prospects of enhancing the strength properties of a binder prepared on a basis of metakaolin and hydrated lime. The mix was modified with powdered technical casein at 0.5%, 1%, 3%, and 5% as a partial replacement for the binder mix by mass. The study involved investigating the effect of the applied natural admixture on the flexural and compressive strengths, as well as pore size distribution. The average pore diameter decreased in the recipes with casein in the amount of 0.5% and 1%, while it increased when the amount of casein equaled 3% and 5%. Only the 0.5% casein admixture caused a decrease in the total porosity. The results show a clear dependence of the strength parameters on porosity. The admixture of casein significantly increased the flexural strength of the pastes, and decreased the compressive strength. The highest increase in flexural strength (by 205.7%) was caused by the admixture of 0.5% casein, while the greatest decrease in compressive strength (by 28%) was caused by the 3% casein admixture. The flexural strength was enhanced, i.a., due to the improved adhesion and mutual bonding of lime particles, resulting from the application of a sticky admixture. No notable difference was indicated during carbonation by the phenolphthalein test. The lime binder is characterized by a slow setting process and low mechanical strength. The results of the research showed the possibility of improving the flexural strength using small amounts of natural admixture, which may broaden the scope of application of this binder.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10639438
  • Published on:
    30/11/2021
  • Last updated on:
    02/12/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine