The Influence of Block Morphology on Urban Thermal Environment Analysis Based on a Feed-Forward Neural Network Model
Author(s): |
Yansu Qi
XueFei Li Yingjie Liu Xiujuan He Weijun Gao Sheng Miao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 14 February 2023, n. 2, v. 13 |
Page(s): | 528 |
DOI: | 10.3390/buildings13020528 |
Abstract: |
Morphological indicators, which are important for urban planning, can be adjusted to effectively mitigate the heat island effect and promote a more comfortable urban environment. Most studies obtain the relationship between morphological indicators and land surface temperature (LST) from the urban scale, and it is difficult to apply the results to urban management and construction projects. Traditional research methods have ignored the complex and interactive relationship between morphological indicators and LST. In this work, the feed-forward neural network (FNN) model is utilized to model the nonlinear relationship between morphological indicators and LST at the block scale. After validation and comparison, the FNN model achieved MAE of 0.885 and RMSE of 1.184, indicating that the influence of morphological indicators on LST could be precisely mapped. In addition, using cooling LST as the optimization target, the specific indicator scheme is suggested based on the FNN model, where the percentage of green space is 17.1%, the percentage of impervious surface is 82.9%, the percentage of water is 0, the bare soil percentage is 0, the floor area ratio is 0.814, the building cover percentage is 32.2%, and the average building height is 7.2 m. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.41 MB
- About this
data sheet - Reference-ID
10711971 - Published on:
21/03/2023 - Last updated on:
10/05/2023