Influence of Across-Wind on Rectangular Tall Buildings
Author(s): |
Subramaniam Shanthi
Ramamurthy Vidjeapriya Krishnan Prabhakaran Jaya |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 December 2024, n. 12, v. 14 |
Page(s): | 3902 |
DOI: | 10.3390/buildings14123902 |
Abstract: |
This study centered on investigating the effect of wind loads on tall rectangular buildings, particularly with various aspect ratios. The aim was to assess the across-wind base shear and moment of tall rectangular buildings using both experimental methods and an Ansys Fluent 2024 analysis. The results were compared between different sections with various aspect ratios according to Australian and Indian building codes. Six models with rectangular sections were employed, with three models measuring 20 m × 60 m and the remaining measuring 20 m × 80 m, to analyze the force measurements at different pitch angles ranging between 0° and 90°. All six models with various aspect ratios (1:3:7, 1:3:8, 1:3:9, 1:4:7, 1:4:8, and 1:4:9) were used to test the forces in both open and urban terrains. In conclusion, this study highlights the major factors that impact the design of tall rectangular structures. A new formula was developed to estimate the across-wind spectrum coefficient, which was followed in the across-wind force and moment calculations in IS 875-Part III:2015. From this study, it is evident that, through advanced techniques such as computational fluid dynamics (CFD) simulations, designers can gain insights into pressure distributions and make informed decisions to optimize the performance of buildings against wind loads. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.82 MB
- About this
data sheet - Reference-ID
10810689 - Published on:
17/01/2025 - Last updated on:
25/01/2025