Inerter Location-Based Vibration Suppression Study of a Transmission Line Equipped with Tuned-Mass-Damper-Inerter (TMDI) under Harmonic Excitation
Author(s): |
Xinpeng Liu
Yingwen Yang Yi Sun Yongli Zhong Lei Zhou |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 April 2022, n. 5, v. 12 |
Page(s): | 657 |
DOI: | 10.3390/buildings12050657 |
Abstract: |
This paper proposes a novel ungrounded TMDI to improve the vibration suppression performance of the transmission line under harmonic excitation. This type of inerter-based damper may transform a translational motion into a rotational motion, greatly increasing the efficiency of vibration suppression. In the present study, the differential equations of motion are first derived based on the transmission line with an ungrounded TMDI structure. Then the closed-form solution of the displacement response spectrum considering the influence of the suspension location of the inerter is developed. The impact of the inerter location on vibration suppression performance is investigated in depth by defining the suspension location factor (υ) and tuning the damping ratio and frequency ratio. The results demonstrate that the suspension location of the inerter has a substantial impact on the damping ratio, frequency ratio, and vibration suppression performance. When the connection location of the inerter is near to the mass of the damper, it degrades the vibration suppression performance of the system. The failure phenomenon of the inerter occurs in the range of 0.2 < υ < 0.3, indicating that the presence of the inerter in this range does not enhance vibration suppression performance. The modal coordinate difference has a considerable impact on the vibration suppression efficacy of the TMDI. With increasing modal coordinate differences, the vibration suppression performance of the TMDI grows dramatically. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.02 MB
- About this
data sheet - Reference-ID
10679406 - Published on:
18/06/2022 - Last updated on:
10/11/2022