^ Increasing Green Infrastructure in Cities: Impact on Ambient Temperature, Air Quality and Heat-Related Mortality and Morbidity | Structurae
0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Increasing Green Infrastructure in Cities: Impact on Ambient Temperature, Air Quality and Heat-Related Mortality and Morbidity

Author(s):

Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 10
Page(s): 233
DOI: 10.3390/buildings10120233
Abstract:

Urban vegetation provides undeniable benefits to urban climate, health, thermal comfort and environmental quality of cities and represents one of the most considered urban heat mitigation measures. Despite the plethora of available scientific information, very little is known about the holistic and global impact of a potential increase of urban green infrastructure (GI) on urban climate, environmental quality and health, and their synergies and trade-offs. There is a need to evaluate globally the extent to which additional GI provides benefits and quantify the problems arising from the deployment of additional greenery in cities which are usually overlooked or neglected. The present paper has reviewed and analysed 55 fully evaluated scenarios and case studies investigating the impact of additional GI on urban temperature, air pollution and health for 39 cities. Statistically significant correlations between the percentage increase of the urban GI and the peak daily and night ambient temperatures are obtained. The average maximum peak daily and night-time temperature drop may not exceed 1.8 and 2.3 °C respectively, even for a maximum GI fraction. In parallel, a statistically significant correlation between the peak daily temperature decrease caused by higher GI fractions and heat-related mortality is found. When the peak daily temperature drops by 0.1 °C, then the percentage of heat-related mortality decreases on average by 3.0% The impact of additional urban GI on the concentration of urban pollutants is analysed, and the main parameters contributing to decrease or increase of the pollutants’ concentration are presented.

Copyright: © 2020 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10526418
  • Published on:
    11/12/2020
  • Last updated on:
    02/06/2021