Increased Durability of Concrete Structures Under Severe Conditions Using Crystalline Admixtures
Author(s): |
Visar Krelani
Muhamet Ahmeti Driton Kryeziu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 21 January 2025, n. 3, v. 15 |
Page(s): | 352 |
DOI: | 10.3390/buildings15030352 |
Abstract: |
This study investigates the durability of concrete structures under severe environmental conditions, focusing on the effects of thermal stress, saline exposure, and seismic activity. The research employs a dual approach, combining laboratory experiments and field case studies to analyze various environmental impacts, mix designs, and the use of crystalline admixtures. Two concrete mix designs, CMD-01-C30/37 (mass concrete) and CMD-02-C35/45 (underwater concrete), were developed and tested for strength, permeability, and self-healing properties. The results demonstrate that both mix designs met or exceeded the required strength specifications, with improved resistance to water penetration and permeability depths lower than the code requirements set by European standards from EC2. The incorporation of crystalline admixtures in the mix designs significantly enhanced durability and performance, aligning with the priority of developing zero-carbon concrete solutions. The study also observed the self-healing capabilities of concrete treated with crystalline admixtures, as evidenced by the sealing of cracks at expansion and construction joints over time. These findings contribute to the development of a robust methodology for creating resilient structures adaptable to climate change, with potential implications for enhancing seismic resistance and structural longevity. The study underscores the importance of considering environmental factors and innovative admixtures in concrete design to improve durability and resilience, particularly in areas prone to seismic activity and extreme environmental conditions. Future research directions should focus on further investigating self-healing mechanisms, exploring the integration of durable and self-healing cement-based materials in engineering practice, and evaluating applications for both new construction and retrofitting existing structures. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.34 MB
- About this
data sheet - Reference-ID
10816147 - Published on:
03/02/2025 - Last updated on:
03/02/2025