0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

In Situ Stress Inversion and Distribution Characteristics of Tunnel Based on Numerical Simulation and Neural Network Technology

Author(s): ORCID
Medium: journal article
Language(s): English
Published in: Shock and Vibration, , v. 2021
Page(s): 1-9
DOI: 10.1155/2021/5545283
Abstract:

According to the geological conditions of the study area, the measured data of in situ stress was analyzed and the influence degree of buried depth was obtained. A numerical simulation research model with full consideration of fault structure and surface characteristics is established, and boundary condition functions with variables are used. The neural network optimized by genetic algorithm is used to establish the nonlinear relationship between the measured value and the simulated value of the variable boundary condition, and the optimal boundary condition function is obtained. Finally, the in situ stress in the study area was predicted. Through the analysis of the in situ stress field in the research target area, the stress boundary conditions are provided for the follow-up study, and the practical basis for the division of the dangerous area of the surrounding rock of the deep and long tunnel is provided.

Copyright: © 2021 Pei Zhang,
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10676199
  • Published on:
    03/06/2022
  • Last updated on:
    03/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine