0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

In situ embedded PZT sensor for monitoring 3D concrete printing: application in alkali-activated fly ash-slag geopolymers

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 12, v. 30
Page(s): 125024
DOI: 10.1088/1361-665x/ac3438
Abstract:

An embedded PZT sensor is developed for in situ monitoring of 3D-printed materials formed by extrusion-based layer deposition. The PZT sensor with a two-layer protection coating is embedded in the material during the layer deposition, and continuous measurements are obtained through the post-printing period. The PZT sensor is used to detect the physio-chemical changes in the alkali-activated fly ash-slag geopolymer with time. The effect of the added weight of each layer of print is sensitively reflected in the electrical impedance (EI) measurement obtained from the PZT sensor. The changes in EI measurements obtained from the embedded PZT sensor are compared with the measurements on the material related to the changes in the rheological behavior, reaction kinetics assessed using calorimetry, and setting behavior in the material. The build-up of the internal structure within the material, which allows buildability, is assessed from the conductance signature of the embedded PZT sensor. The changes produced by the chemical reactions within the binder, which bring about irreversible changes leading to the setting of the printed structure, are also sensitively detected in the EI measurements from the embedded PZT sensor. The amplitude of conductance is sensitive to the setting of the material. The frequency changes from the recorded EI signature reflect the continuous increase in the material stiffness with time.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ac3438.
  • About this
    data sheet
  • Reference-ID
    10636286
  • Published on:
    30/11/2021
  • Last updated on:
    30/11/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine