0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

In-Plane Lateral Performance of AAC Block Walls Reinforced with CFPR Sheets

Author(s):
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1680
DOI: 10.3390/buildings12101680
Abstract:

This study evaluates the structural behavior of aerated autoclave concrete (AAC) blocks laterally loaded in the in-plane direction under quasi-static loading. The study started with the evaluation of the basic physical properties of the AAC blocks, including its structural properties (individually and as part of an assembly), followed by large-scale testing of two (half-scaled) walls constructed with commercially available AAC blocks. The first wall was unreinforced, similar to the commonly used construction technique for low-rise houses where AAC blocks are utilized. The second one was internally reinforced with short dowels connecting the foundation to the walls through their lower block rows and externally reinforced with carbon-fiber-reinforced polymer (CFRP) sheets through the entire wall height. The reinforcement scheme was conducted in such a way that does not delay construction time. Reinforcing the wall significantly increased the strength of the wall in the in-plane direction. The reinforced wall exhibited increased initial stiffness, higher ductility, and larger energy dissipation, in addition to a change in the failure mode. The unreinforced wall failure mode was dominated by blocks sliding, while the reinforced wall failure was dominated by compressive shear failure with wall uplifting. The findings of this study can be implemented to increase the lateral strength of unreinforced new houses and can also be extended to strengthen existing houses built with unreinforced AAC blocks.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699987
  • Published on:
    11/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine