0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Improving the Seismic Performance of Steel Frames under Mainshock–Aftershock Using Post-Tensioned Connections

Author(s):

ORCID
ORCID
ORCID





Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1676
DOI: 10.3390/buildings13071676
Abstract:

In this study, the seismic responses of moment-resisting steel frames (MRSFs) with welded and post-tensioned connections under 28 artificial seismic sequences (mainshock–aftershock) are compared. For this aim, the mainshock are scaled at different ground motion intensity levels as a function of the spectral pseudo-acceleration corresponding to the fundamental period of vibration of the structure Sa(T1), whereas different intensity levels of the aftershocks are used for a percentage of the peak maximum acceleration of the mainshock. The seismic performance comparison of both structural systems is computed for the maximum, residual inter-story drift and hysteretic energy demands. The results show that post-tensioned frames significantly reduce the structural demands, especially in the case of residual inter-story drifts and hysteretic energy in comparison with moment-resisting steel frames with welded connections. The reductions in the structural response tend to be larger as the intensity of the aftershock tends to increase. Therefore, it is concluded that the use of post-tensioned connections is a great alternative to mitigate the seismic response of buildings subjected to seismic sequences.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737608
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine