0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Improvement Strategies for Microclimate and Thermal Comfort for Urban Squares: A Case of a Cold Climate Area in China

Author(s):
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 12
Page(s): 944
DOI: 10.3390/buildings12070944
Abstract:

Urban squares are an important part of a city’s overall spatial environment. However, many urban squares lack rational designs, causing the thermal environment to deteriorate. To ensure sustainable urban development, urban square microclimates should be improved. Given that, this study investigates the effects of three coverages of three landscape elements of urban squares through modeling and simulation using the ENVI-met model validated by field measurements. The correlation between physiological equivalent temperature (PET) and different amounts of landscape elements is investigated using Spearman analysis. This study presents a case study of a typical urban square in a cold climate area. Design strategies in the area are proposed. The results show that the microclimate and thermal comfort of the urban square can be improved by expanding water bodies, modest increasing buildings and optimizing vegetation. Vegetation is the most important landscape element affecting thermal comfort in the urban square. The PET can be reduced by about 1.5 °C by increasing the vegetation cover from 40% to 70%. However, the degree of microclimate regulation by vegetation is disturbed by water bodies and buildings (|ρ| ≥ 0.5). Therefore, to achieve a more comfortable thermal environment, a combination of landscape elements should be considered.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10688403
  • Published on:
    13/08/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine