0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Improvement of Grid Independence Test for Computational Fluid Dynamics Model of Building Based on Grid Resolution

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-11
DOI: 10.1155/2020/8827936
Abstract:

Computational fluid dynamics (CFD) is being used in various research fields on the building environment. Target space of the CFD model is divided into a finite number of grids for numerical analysis. Therefore, an optimal grid design is required to obtain accurate results. The grid independence test is generally performed to design an optimal grid. However, given that there is no standardized procedure for gird independence test, most depend on the researcher’s experience and knowledge. In the conventional method, the subjective judgment of the researcher affected the selection of the grid conditions and the criteria for the optimal grid. It can lead to a decrease in the reliability of the simulation results by poor grid design. This study proposed a grid independence test method that applies the grid resolution to improve the conventional method. The grid resolution was calculated by applying the characteristic length. CV(RMSE) and R2 were applied as the criteria for optimal grid. A case study was conducted to evaluate the adequacy of the proposed method. As the characteristic length increased, the optimal grid resolution increased. In particular, for a characteristic length of 0.7 or more, the optimal grid resolution was evaluated as 24. The grid convergence index (GCI) was calculated to verify the suitability of the proposed method. As a result, all of the optimal grid resolution derived from the proposed method was evaluated as the optimal condition.

Copyright: © Minhyung Lee et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10536039
  • Published on:
    01/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine