Improvement in the Seismic Performance of a Super-Long-Span Concrete-Filled Steel-Tube-Arch Bridge
Author(s): |
Dan Ye
Yijin Tong Lijun Gan Zhuoran Tang Ruijie Zhang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 28 June 2023, n. 7, v. 13 |
Page(s): | 1811 |
DOI: | 10.3390/buildings13071811 |
Abstract: |
The applicability of current seismic-performance-improvement technologies needs to be studied. This research took a super-long-span CFST arch bridge with a total length of 788 m as the object on which to perform a non-linear time-history analysis and a seismic-check calculation according to the seismic response, so as to reveal the seismic weak points of the arch bridge. After the completion of the bridge’s construction, we arranged and utilized the stayed buckle cables (SBCs) reasonably. The seismic performance of the super-long-span CFST arch bridge was improved through friction-pendulum bearings (FPBs) and SBCs. The research shows that FPBs can solve the problem of the insufficient shear resistance of bearings, and SBCs can address the problem whereby the compressive stress of the transverse connection of the main arch exceeds the allowable stress. Moreover, SBCs can increase the transverse stiffness of arch bridges and reduce their seismic responses. Finally, a combination of FPBs and SBCs was adopted to improve the overall seismic performance of the arch bridge and obtain the best seismic-performance-improvement effect. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.22 MB
- About this
data sheet - Reference-ID
10737634 - Published on:
03/09/2023 - Last updated on:
14/09/2023