0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Impacts of Air Leakage Paths and Airtightness Levels on Air Change Rates

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 10
Page(s): 55
DOI: 10.3390/buildings10030055
Abstract:

Southern European countries have milder climatic conditions that differ from their colder northern counterparts, which greatly influence indoor ventilation strategies. The relation between a building’s airtightness and the air change rates remains a topic to be fully tackled in these countries, since natural ventilation is very frequent. In this work, the ventilation and airtightness of a case study were analyzed in-depth to support a discussion on this topic. CO₂ concentration decay and blower-door measurements were used to characterize the infiltration and ventilation conditions of the case study. The case study represents a common Portuguese situation, with highly permeable envelopes, combined with highly variable air change rates. Transient simulations were carried out for the comparison of scenarios where different configurations of possible air paths were analyzed. The simulations included both natural and mechanical ventilation scenarios. An air sweeping effect from bedroom to bathroom only occurred when the mechanical extraction ventilation (MEV) was on. Different air leakage path configurations resulted in substantial offsets, up to 63%, of the air change rate (ACH) due to natural occurring forces. The results confirmed that the relation between airtightness and air change rates should be carefully analyzed in southern European countries, as indoor air quality, comfort of occupants, and energy efficiency are highly influenced by the considered variables.

Copyright: © 2020 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10416661
  • Published on:
    17/03/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine