0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Impact of Rainfall-Induced Landslide Susceptibility Risk on Mountain Roadside in Northern Thailand

Author(s):




ORCID


ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 2, v. 7
Page(s): 17
DOI: 10.3390/infrastructures7020017
Abstract:

Landslide incidents frequently occur in the upper northern region of Thailand due to its topography, which is mostly mountainous with high slopes. In the past, when landslides happened in this area, they affected traffic accessibility for rescue and evacuation. For this reason, if the risk of landslides could be evaluated, it would help in the planning of preventive measures to mitigate the damage. This study was carried out to create and develop a risk estimation model using the artificial neural network (ANN) technique for landslides at the edge of the roadside, by collecting field data on past landslides in the study areas in Chiang Rai and Chiang Mai Provinces. A total of 9602 data points were collected. The variables for forecasting were: (1) land cover, (2) physiographic features, (3) slope angle, and (4) five-day cumulative rainfall. Two hidden layers were used to create the model. The number of nodes in the first and second hidden layers were five and one, respectively, which were derived from a total of 25 trials, and the highest accuracy achieved was 96.74%. When applying the model, a graph demonstrating the relationship between the landslide risk, rainfall, and the slopes of the road areas was obtained. The results show that high slopes result in more landslides than low slopes, and that rainfall is a major trigger for landslides on roads. The outcomes of the study could be used to create risk maps and provide information for developing warnings for high-slope mountain roads in the upper northern region of Thailand.

Copyright: © 2022 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

Geographic Locations

  • About this
    data sheet
  • Reference-ID
    10722927
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine