0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Impact of Rail Irregularities on Longitudinal Level Deterioration Based on Deconvoluted Data

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 9, v. 9
Page(s): 162
DOI: 10.3390/infrastructures9090162
Abstract:

When a wheel passes over a rail surface irregularity, the resulting vehicle excitations lead to the application of additional system forces to both the track and the vehicle. These forces contribute to an accelerated track geometry deterioration, which in turn results in increased costs. In a recent paper, a clear correlation between the presence of rail irregularities and poor track geometry quality was demonstrated. Rail surface irregularities thereby were quantified by raw data of a chord-based optical measurement system mounted on the regular track recording vehicle in Austria. This paper deals with deconvolution of the recorded data in order to guarantee irregularity quantification without any distortion. Two different deconvolution approaches are developed and validated by additional measurements. Using the deconvoluted data, previously published evaluations were repeated, and the impact of using deconvoluted data instead of chord values was analysed. The correlation between short_wave effects and track geometry quality can not only be confirmed; it is even stronger than predicted by the chord data. The results of the analysis demonstrate that irregularities with amplitudes exceeding 0.08 mm contribute to an accelerated deterioration in track geometry. Amplitudes of a greater severity result in track geometry levels that are up to 120% inferior to the average.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10800604
  • Published on:
    23/09/2024
  • Last updated on:
    23/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine