Image-Based Crack Detection Methods: A Review
Author(s): |
Hafiz Suliman Munawar
Ahmed W. A. Hammad Assed Haddad Carlos Alberto Pereira Soares S. Travis Waller |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Infrastructures, August 2021, n. 8, v. 6 |
Page(s): | 115 |
DOI: | 10.3390/infrastructures6080115 |
Abstract: |
Annually, millions of dollars are spent to carry out defect detection in key infrastructure including roads, bridges, and buildings. The aftermath of natural disasters like floods and earthquakes leads to severe damage to the urban infrastructure. Maintenance operations that follow for the damaged infrastructure often involve a visual inspection and assessment of their state to ensure their functional and physical integrity. Such damage may appear in the form of minor or major cracks, which gradually spread, leading to ultimate collapse or destruction of the structure. Crack detection is a very laborious task if performed via manual visual inspection. Many infrastructure elements need to be checked regularly and it is therefore not feasible as it will require significant human resources. This may also result in cases where cracks go undetected. A need, therefore, exists for performing automatic defect detection in infrastructure to ensure its effectiveness and reliability. Using image processing techniques, the captured or scanned images of the infrastructure parts can be analyzed to identify any possible defects. Apart from image processing, machine learning methods are being increasingly applied to ensure better performance outcomes and robustness in crack detection. This paper provides a review of image-based crack detection techniques which implement image processing and/or machine learning. A total of 30 research articles have been collected for the review which is published in top tier journals and conferences in the past decade. A comprehensive analysis and comparison of these methods are performed to highlight the most promising automated approaches for crack detection. |
Copyright: | © 2021 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.54 MB
- About this
data sheet - Reference-ID
10723013 - Published on:
22/04/2023 - Last updated on:
10/05/2023