0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Hygro-thermo-mechanical properties of tunnel excavated earth-based plasters

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Journal of Building Physics, , n. 6, v. 47
Page(s): 651-671
DOI: 10.1177/17442591241238438
Abstract:

This paper aims to valorize the excavated earth (ExE) generated from the tunnel digging works, to elaborate excavated earth-based plasters for masonry walls. Excavated earth is an admixture of water, gravel, sand, and fine particles. A small amount of gravel (<4% by weight) was removed, and the tunnel-excavated earth is used to elaborate plasters. Cement and slag are used as stabilizers in ExE-based plasters and reinforced with natural hemp fibers. The physical, mechanical, thermal, and hydric properties of ExE-based plasters are investigated. The increase in cement content affects the workability of ExE-based plasters in a fresh state, while the addition of natural hemp fibers has no significant effect on the workability. It has been demonstrated that the mechanical performances (compressive strength, flexural strength, and dynamic modulus) of ExE-based plasters increase with the increase of cement content and decrease with the increase in slag content. The hemp fiber addition (0.8% by weight) shows no considerable effect on the ExE-based plaster’s mechanical performance. As for the thermal properties, the increase of cement and slag contents negatively affects the thermal conductivity. The increase in cement content decreases the water absorption of earth-plasters. Except for some tests (shrinkage, main cohesion, and cracking tests), which have not been done in this study, the results of cement-stabilized ExE-based plasters (7% and 9%) are in accordance with the recommendation of the DIN 18947 standard, indicating that the tunnel excavated earth can be used as earth-plasters.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/17442591241238438.
  • About this
    data sheet
  • Reference-ID
    10775155
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine