0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Hybrid Finite-Discrete Element Modelling of Excavation Damaged Zone Formation Process Induced by Blasts in a Deep Tunnel

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2020
Page(s): 1-27
DOI: 10.1155/2020/7153958
Abstract:

A brief literature review of numerical studies on excavation damage zone (EDZ) is conducted to compare the main numerical methods on EDZ studies. A hybrid finite-discrete element method is then proposed to model the EDZ induced by blasts. During the excavation by blasts, the rock mass around the borehole is subjected to dynamic loads, i.e., strong shock waves crushing the adjacent rocks and high-pressure gas expanding cracks. Therefore, the hybrid finite-discrete element method takes into account the transition of the rock from continuum to discontinuum through fracture and fragmentation, the detonation-induced gas expansion and flow through the fractured rock, and the dependence of the rock fracture dynamic behaviour on the loading rates. After that, the hybrid finite-discrete element method is calibrated by modelling the rock failure process in the uniaxial compression strength (UCS) test and Brazilian tensile strength (BTS) test. Finally, the hybrid finite-discrete element method is used to model the excavation process in a deep tunnel. The hybrid finite-discrete element method successfully modelled the stress propagation and the fracture initiation and propagation induced by blasts. The main components of the EDZ are obtained and show good agreements with those well documented in the literature. The influences of the initial gas pressure, in situ stress, and spacing between boreholes are discussed. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool for studying the EDZ induced by blasts in deep tunnels.

Copyright: © 2020 Huaming An et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10427970
  • Published on:
    30/07/2020
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine