High-Temperature Performance Evaluation of Asphalt Mixtures by Adding Short-Chopped Basalt Fiber
Author(s): |
Xueyang Jiu
Yu Wang Zhengguang Wu Peng Xiao Aihong Kang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 14 February 2023, n. 2, v. 13 |
Page(s): | 370 |
DOI: | 10.3390/buildings13020370 |
Abstract: |
Adding basalt fiber (BF) can effectively enhance the performance of asphalt mixtures and improve the service quality of asphalt pavement. However, the effect of BF on the high-temperature performance of different types of asphalt mixtures and systematic high-temperature performance test analysis are still not well known. To address this issue, three typical types of asphalt mixtures of AC-13, SMA-13, and SUP-13 were selected. Wheel tracking test, uniaxial penetration test, dynamic modulus test, and dynamic creep test were conducted. In addition, relevant parameters of dynamic stability, penetration strength, dynamic modulus index, and flow number were analyzed. The results showed that adding BF into the asphalt mixture could improve the dynamic stability, penetration strength, dynamic modulus index, and flow number significantly, indicating that adding basalt fiber is an effective solution to the rutting deformation damage of asphalt pavement. Moreover, the parameter of dynamic stability presented an approximate polynomial correlation with penetration strength, dynamic modulus index, and flow number, respectively. These findings provide a certain theoretical reference for evaluating the high-temperature performance of BF-modified asphalt mixtures. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.09 MB
- About this
data sheet - Reference-ID
10712549 - Published on:
21/03/2023 - Last updated on:
10/05/2023