High-Strength Building Material Based on a Glass Concrete Binder Obtained by Mechanical Activation
Author(s): |
Sergey S. Dobrosmyslov
Vladimir E. Zadov Rashit A. Nazirov Veronika A. Shakirova Anton S. Voronin Michail M. Simunin Yuri V. Fadeev Maxim S. Molokeev Ksenia A. Shabanova Stanislav V. Khartov |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 2 August 2023, n. 8, v. 13 |
Page(s): | 1992 |
DOI: | 10.3390/buildings13081992 |
Abstract: |
As part of the work, the chemical interaction of finely ground glass (~1 μm), calcium oxide, and water was studied. It is shown that an increase in the fineness of grinding makes it possible to abandon autoclave hardening in the production of products on a hydrosilicate binder. The study of chemical interaction was carried out by calculating the thermodynamic equilibrium and was also confirmed by XRD analysis. DTA analysis showed that an increase in the treatment temperature leads to an increase in the proportion of the reacted phase at the first stage. Subsequently, phase formation is associated with the presence of CaO. The carrier of strength characteristics is the CaO×2SiO₂×2H2O phase. The selection and optimization of the composition make it possible to obtain a high-strength glass concrete material with a strength of about 110 MPa. The micrographs of the obtained samples correspond to classical hydrosilicate systems. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.09 MB
- About this
data sheet - Reference-ID
10737546 - Published on:
02/09/2023 - Last updated on:
14/09/2023