0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

High-Speed Videogrammetry for Seismic Performance of the Spherical Reticulated Shell Structure on the Shaking Table

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 553
DOI: 10.3390/buildings13020553
Abstract:

Spherical reticulated shell structure is an important structural form of large-span space buildings. It is of great significance to monitor three-dimensional (3D) dynamic responses of spherical reticulated shell structure to better understand its seismic performances, which will be helpful in the future to ensure the healthy condition of large-span space buildings during their lifespan. In this study, with the advantages of non-contact and high accuracy, a high-speed videogrammetric measurement method is proposed for monitoring the 3D dynamic responses of the seismically isolated, spherical, reticulated shell structural model. Two issues—the high-speed videogrammetric acquisition system and network configuration, as well as image sequence target tracking and positioning—are emphasized to achieve a cache of high-speed images and to improve the accuracy of tracking and positioning target points. The experimental results on the shaking table from the proposed method have been compared with those from traditional Optotrak Certus and accelerometers. The results prove that the proposed method is capable and useful for analyzing the seismic performance of spherical reticulated shell structures, as the dynamic responses monitoring accuracy of the method can reach the submillimeter level, with root mean square error values of 0.32 mm, 0.7 mm and 0.06 mm in the X, Y and Z directions, respectively.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712116
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine