0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

High-Cycle Fatigue Crack Growth in T-Shaped Tubular Joints Based on Extended Finite Element Method

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 13
Page(s): 2722
DOI: 10.3390/buildings13112722
Abstract:

High fatigue load, which exists widely in steel building structures, likely leads to brittle failure at the joints, supports, and so on. This can lead to the partial or total damage of the structure and even to cause the collapse of the whole structure. This article aims to provide a method to simulate high-cycle crack propagation in tubular joints, which is one of the most common types occurring in steel structures. Firstly, sixteen T-shaped tubular joint models under different load conditions and initial crack dimensions were built through the coordinate mapping method. Secondly, based on the extended finite element method (XFEM), an algorithm was developed by combining the secondary development in Abaqus and a quasistatic simulation method to simulate high-cycle crack growth in tubular joints under a constant amplitude. The results of the simulations were compared with experimental data. The study found that the surface stress calculated from the tubular joint models using the coordinate mapping method was close to the experimental data. Through the comparison of the crack propagation rate and the crack growth process between the simulation and experiment results, the simulation method was validated. When a crack penetrated the tube wall, the difference in the load cycles between the simulations and the experiment was 9.5%. The initial crack dimension had an impact on the crack propagation, with the decrease in the a/c and KII generally becoming the dominant factor with respect to the crack growth, while the fatigue life of the joints tended to increase.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753387
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine