0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Heat Flow through a Facede with a Controlled Ventilated Gap

Author(s): ORCID



ORCID

ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 13
Page(s): 817
DOI: 10.3390/buildings13030817
Abstract:

The article presents current research results in the field of airflow through a façade with a width of 1 m and a height of 13.7 m and with a ventilated gap, and its effect on the year-round heat balance of this façade. An idea to influence airflow in the ventilated gap of the façade is presented based on the results of developed software and the suitability of closing the air gap in winter and in the transition period of the year is described. First, the boundary conditions of the calculations, which are further used in the energy balance between the interior of the building and the exterior environment are defined. In order to include these influences, a discrete analytical calculation was created. It consists of the time distribution of the investigated thermal phenomena calculations. A significant finding is an obvious benefit of controlling the airflow through a ventilated gap in the winter and especially in the transitional period of the year. This technological knowledge has a high potential for energy savings related to the heating of buildings. As the calculations show, airflow control through a ventilated façade reduces heat flow by 25–30% on average, and in contrast, it increases heat gains by 20% and the specific values are presented within the article.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728519
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine