0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Guided wave tomography based on least-squares reverse-time migration

Author(s):


Medium: journal article
Language(s): English
Published in: Structural Health Monitoring, , n. 4, v. 19
Page(s): 1237-1249
DOI: 10.1177/1475921719880296
Abstract:

A key to successful damage diagnostics and quantification is damage imaging through ultrasonic guided wave tomography. We propose the implementation of least-squares reverse-time migration in a circular array for damage imaging in an aluminum plate. The theory of least-squares reverse-time migration is formulated for guided wave applications along with the summary of an efficient optimization algorithm: the conjugate gradient method. Numerical simulation and laboratory experiments are used to evaluate its performance with a circular array setup. In order to improve the data processing efficiency, the concept of using a limited number of actuators but a relatively large number of sensors is tested. Studies are conducted on three numerical cases, including a rectangular-shaped damage site, a complex-shaped damage site, and six other damage sites varying in size. As an inversion-based method, least-squares reverse-time migration shows significantly improved shape reconstruction with the amplitude quantification capability, compared to conventional reverse-time migration. Our experimental data are generated by piezoelectric wafers as actuators, measured by a scanning laser Doppler vibrometer to form a circular array on an aluminum plate, with a rectangular notch located in the inner region of the array. The damage images using experimental data show consistency in both the simulations using Born scattering and in altered material properties in the damaged region. According to the comparison, least-squares reverse-time migration for guided wave tomography is a promising technology to provide high-resolution large area damage imaging for plate-like structures.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1177/1475921719880296.
  • About this
    data sheet
  • Reference-ID
    10562355
  • Published on:
    11/02/2021
  • Last updated on:
    19/02/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine