0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Graphene enhanced flexible piezoelectric transducers for dynamic strain measurement: from material preparation to application

Author(s): ORCID





Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 2, v. 32
Page(s): 025012
DOI: 10.1088/1361-665x/acae4b
Abstract:

In this study, graphene particles are introduced to the lead magnesium niobate-lead titanate and polyvinylidene fluoride (PVDF) to form a flexible ternary composite. The graphene concentration is rigorously designed and morphologically optimized, warranting good piezoelectric and dielectric properties. The piezoelectric and dielectric performances are greatly increased compared with the pure PVDF films. Then a theoretical model is formulated to quantitatively interpret the graphene effect on the permittivity performance and to provide guidelines for the optimization of graphene volume fraction. Moreover, a simple and cost-effective technique is designed to package the composite film as a large-area, lightweight and flexible transducer. Several confirmatory experiments and a proof-of-concept test are performed based on the proposed flexible piezoelectric transducer to validate the capability of the dynamic strain sensing. By comparing with the results from conventional strain gauges and ceramic piezoelectric wafers, it is verified that the proposed flexible transducer has proven responsivity and precision in responding to quasi-static strain, medium-frequency vibration, and ultrasound. The great potential of the developed transducer for a wide range of applications including structural health monitoring and human motion detection has been demonstrated.

Copyright: © 2022 Jingjing He, Ziwei Fang, Chenjun Gao, Wenxi Zhang, Xuefei Guan, Jing Lin
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10707666
  • Published on:
    21/03/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine