0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

GGBFS and Red-Mud based Alkali-Activated Concrete Beams: Flexural, Shear and Pull-Out Test Behavior

Author(s): ORCID




Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 5, v. 10
Page(s): 1494-1512
DOI: 10.28991/cej-2024-010-05-09
Abstract:

Geopolymers and antacid-enacted fasteners have accumulated critical interest as promising development and fixing materials because of their exceptional properties. Also, they bring about less contamination contrasted with regular concrete cements. Geopolymers address a clever class of suggested restricting materials blended through the basic enactment of bountiful aluminosilicate materials. The usage of geopolymer materials from side effects offers a critical decrease in carbon impression and yields positive natural effects. Geopolymer is progressively recognized as a plausible substitute for OPC concrete. In this review, sodium-based antacid activators, especially sodium metasilicate (Na2SiO3), were used for different blend extents. The boundaries researched included NaOH arrangements with a grouping of 8 M, alongside a Na2SiO3/NaOH proportion of 1. This paper evaluates the fundamental characteristics of geopolymer cement beams, employing red mud and GGBFS in powdered form as complete replacements for traditional concrete. Six bar specimens are tested under a two-point static loading condition, all cured at room temperature under ambient conditions. Of the six beams, three were exposed to flexural conduct testing with a molarity of 8 M, while the excess three beams were tried for shear conduct. The outcomes of testing geopolymer beams subjected to shear and bending loads indicated that the beams incorporating aluminum slag performed better than those incorporating blast furnace slag. Both types also demonstrated promising results compared to beams incorporating OPC, highlighting their potential environmental benefits compared to cement use. Doi: 10.28991/CEJ-2024-010-05-09 Full Text: PDF

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.28991/cej-2024-010-05-09.
  • About this
    data sheet
  • Reference-ID
    10789951
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine