0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Geotechnical Properties of Wood Ash-Based Composite Fine-Grained Soil

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-7
DOI: 10.1155/2018/9456019
Abstract:

It is observed in Bangladesh that there is an extensive use of wood as a solid biomass for heat and electricity production, which led to increase in the amount of combustion residues known as ash. These ashes are discarded and dumped here and there, resulting in pollution of the environment. It could be managed by using wood ash as a stabilizer of soft clay. It is found that there is an enhancement of the engineering properties of existing soil in stabilized forms particularly unconfined compressive strength (UCS), shear strength parameters, workability, and compaction and compressibility characteristics. Therefore, laboratory tests associated with these properties were performed for some selected percentage of wood ash, for example, 0%, 5%, 7.5%, 10%, and 12.5%. Chemical investigation of wood ash depicts that it contains approximately 30% CaO, which directs it to behave like a pozzolanic material. Besides, the test result signifying that the soil could be made lighter with the increase of moisture content, strength, and reduction of compressibility due to the addition of ash content.

Copyright: © 2018 Bayshakhi Deb Nath et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176627
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine