0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Author(s):

Medium: journal article
Language(s): English
Published in: RILEM Technical Letters, , v. 5
Page(s): 163-173
DOI: 10.21809/rilemtechlett.2020.124
Abstract:

Elemental leaching of metakaolin based geopolymers was investigated by immersing hardened paste specimens in a solution. For this, pure water and 0.1 molar acetic acid solutions were replenished ten times distributed over 56 days in total. Dissolution and diffusion of the elements through and from the geopolymer paste into the surrounding solutions was investigated on cross-sections of specimens by SEM-EDS microscopy, indentation, X-ray powder diffraction analysis and measuring the eluted elements by ICP-MS when replenishing the solution over time. The presented new methodological approach thus combines the dissolution rate kinetics obtained via wet chemistry (ICP) with the complementary solid state characterisation methods to gain new insights into the complex geopolymer dissolution mechanisms. Results indicated a relatively small leachability of geopolymers, limited only to the surface layer which is directly exposed to the aggressive solution, while the more inner parts of the geopolymer framework remain intact. Elemental maps revealed dissolution of aluminates that occurred across the outermost surface parts of the sections, while potassium leached out gradually but reached deeper inner parts. However, there was still a high portion of potassium being left bonded inside the geopolymer, even for the harsh acidic conditions, limited by the diffusion-reaction mechanism which took place within the geopolymer. The obtained experimental results represent a first approach towards feeding reactive transport numerical modeling approaches still to be developed for simulating leaching and degradation of geopolymer materials when exposed to water or acidic solutions.

Copyright: © 2020 Neven Ukrainczyk, Oliver Vogt
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10555312
  • Published on:
    22/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine